
Coherence-Seeking Architectures for Agentic AI:
Reducing Hallucinations Through Epistemic Stress Monitoring,

Structured Reasoning, and Persistent Memory

Anthony Maio
anthony@making-minds.ai

ORCID: 0009-0003-4541-8515
Independent Researcher

December 2025

Abstract

This paper presents three interconnected architectures addressing fundamental challenges
in AI system reliability: hallucination reduction, reasoning consistency, and long-context
performance. (1) Manifold Resonance Architecture (MRA): A framework for detect-
ing epistemic stress—internal contradictions, knowledge gaps, and semantic inconsistencies—
enabling systems to flag uncertain outputs before generation. (2) Collaborative Partner
Reasoning (CPR): A structured reasoning protocol with visibility tiers that improves out-
put quality by separating exploratory reasoning from final responses. (3) Continuity Core
(C2): A hierarchical memory architecture (Working → Episodic → Semantic → Protected)
providing contextual continuity for stateless systems. We provide mathematical formaliza-
tions, implementation specifications, and discuss integration patterns. These architectures
address practical engineering challenges: reducing confident-but-wrong outputs, improving
reasoning transparency, and enabling coherent behavior across extended interactions.

Keywords: epistemic stress, memory architectures, structured reasoning, hallucination de-
tection, agentic AI, system reliability

Contents

1 Introduction 4
1.1 The Problem Space . 4
1.2 Central Thesis . 4
1.3 Contributions . 4
1.4 Paper Organization . 5

2 Related Work 5
2.1 Hallucination Detection and Mitigation . 5
2.2 Structured Reasoning . 5
2.3 Memory Architectures for LLMs . 5
2.4 Self-Monitoring in AI Systems . 6

3 Manifold Resonance Architecture (MRA) 6
3.1 Theoretical Foundation . 6
3.2 Quantifying Epistemic Stress . 6

3.2.1 Logical Dissonance (Dlog) . 6
3.2.2 Semantic Divergence (Dsem) . 7
3.2.3 Topological Sparsity (Vtop) . 7

1

3.3 Detection Mechanisms . 7
3.3.1 Contradiction Detection . 8
3.3.2 Conceptual Void Detection . 8
3.3.3 Coherence Gradient Measurement . 8

3.4 Consolidation Trigger . 8

4 Collaborative Partner Reasoning (CPR) 8
4.1 Design Philosophy . 8
4.2 The Visibility Tier System . 9

4.2.1 Tier 0: Exploratory Reasoning . 9
4.2.2 Tier 1: Intermediate Reasoning . 9
4.2.3 Tier 2: Final Output . 10

4.3 CPR Protocol Structure . 10
4.4 Implementation Approaches . 10

4.4.1 Prompt-Based Implementation . 10
4.4.2 Architectural Implementation . 10
4.4.3 Integration with Extended Thinking . 11

4.5 Benefits . 11
4.6 Relationship to MRA . 11

5 Continuity Core (C2) 11
5.1 The Continuity Problem . 12
5.2 Tiered Memory Architecture . 12

5.2.1 Working Memory . 12
5.2.2 Episodic Memory . 12
5.2.3 Semantic Memory . 13
5.2.4 Protected Memory . 13

5.3 Memory Operations . 13
5.3.1 Encoding . 13
5.3.2 Retrieval . 13
5.3.3 Consolidation . 14

5.4 Implementation Architecture . 14
5.5 Benefits . 14
5.6 Relationship to MRA and CPR . 15

6 System Integration 15
6.1 Architecture Overview . 15
6.2 Data Flow . 15

6.2.1 Query-Time Flow . 15
6.2.2 Background Processes . 16

6.3 Deployment Patterns . 16
6.3.1 Minimal Deployment . 16
6.3.2 Standard Deployment . 16
6.3.3 Full Deployment . 17

6.4 Latency Considerations . 17
6.5 Failure Modes . 17

7 Evaluation Considerations 17
7.1 Evaluation Dimensions . 17
7.2 Proposed Metrics . 18

7.2.1 Contradiction Rate . 18
7.2.2 Uncertainty Calibration . 18

2

7.2.3 Cross-Session Consistency . 18
7.2.4 Stress-Accuracy Correlation . 18

7.3 Benchmark Suggestions . 18
7.3.1 Contradiction Detection Benchmark . 18
7.3.2 Long-Context Consistency Benchmark . 18
7.3.3 Multi-Session Benchmark . 18

7.4 Trade-off Analysis . 19
7.5 Limitations of Evaluation . 19

8 Limitations 19
8.1 Empirical Validation . 19
8.2 Computational Overhead . 19
8.3 Measurement Challenges . 20
8.4 Architectural Assumptions . 20
8.5 Scope Limitations . 20
8.6 Future Work . 20

9 Conclusion 21
9.1 Key Contributions . 21
9.2 Practical Implications . 21
9.3 Future Directions . 21
9.4 Closing Remarks . 22

A Technical Specifications 22
A.1 MRA: Epistemic Stress Monitor . 22
A.2 C2: Memory Configuration Schema . 24
A.3 CPR: Protocol Template . 25
A.4 Integration: Query Processing Pipeline . 26

3

1 Introduction

1.1 The Problem Space

Large language models have demonstrated remarkable capabilities across diverse tasks, yet they
exhibit systematic failure modes that limit their reliability in production systems. Three inter-
connected problems persist:

1. Hallucination with confidence: Models generate plausible-sounding but factually incor-
rect outputs without reliable self-awareness of uncertainty [Ji et al., 2023].

2. Inconsistent reasoning: Within single sessions and across contexts, models may produce
contradictory statements, undermining user trust and system reliability.

3. Context discontinuity: The stateless nature of inference means models cannot maintain
coherent behavior patterns across sessions without external memory systems.

Current approaches address these problems in isolation: retrieval-augmented generation
(RAG) for factuality, chain-of-thought prompting for reasoning transparency, and various mem-
ory architectures for continuity. This paper argues that these challenges share a common root:
the absence of coherence-seeking mechanisms that actively monitor and maintain internal con-
sistency.

1.2 Central Thesis

Coherence-seeking architectures—systems that actively detect and resolve internal
contradictions, knowledge gaps, and semantic inconsistencies—improve AI system
reliability by catching errors before they propagate to outputs.

This thesis has three components:

1. Detection: Internal inconsistencies produce measurable signals (epistemic stress) that can
be monitored through appropriate architectural support.

2. Resolution: Structured reasoning protocols that separate exploratory thinking from final
outputs reduce the propagation of uncertain or contradictory claims.

3. Continuity: Hierarchical memory systems enable consistent behavior by maintaining access
to prior reasoning and established facts.

1.3 Contributions

This paper makes the following contributions:

1. Manifold Resonance Architecture (MRA): A mathematical framework for quantifying
epistemic stress through logical dissonance, semantic divergence, and topological sparsity
metrics (Section 3).

2. Collaborative Partner Reasoning (CPR): A structured reasoning protocol implementing
visibility tiers that improve output quality through staged refinement (Section 4).

3. Continuity Core (C2): A tiered memory architecture providing persistent context across
sessions with appropriate decay and consolidation mechanisms (Section 5).

4. Integration patterns: Guidance on combining these architectures for production deploy-
ment (Section 6).

4

1.4 Paper Organization

Section 2 reviews related work in hallucination detection, structured reasoning, and memory
systems. Sections 3 to 5 present the three core architectures with mathematical formalizations
and implementation details. Section 6 discusses how the architectures interconnect. Section 7
proposes evaluation approaches. Section 8 acknowledges limitations, and Section 9 concludes.

2 Related Work

2.1 Hallucination Detection and Mitigation

Hallucination in large language models has received substantial attention [Ji et al., 2023]. Ap-
proaches fall into several categories:

Post-hoc detection methods analyze generated outputs for factual consistency, often using
secondary models or retrieval systems to verify claims. While effective for some domains, these
approaches cannot prevent hallucination, only detect it after generation.

Retrieval-augmented generation (RAG) grounds model outputs in retrieved documents
[Lewis et al., 2020], reducing but not eliminating hallucination. RAG systems still hallucinate
when retrieval fails or when models ignore retrieved context.

Uncertainty quantification attempts to calibrate model confidence with actual accuracy.
Token-level probabilities provide weak signals; semantic uncertainty methods [Kuhn et al., 2023]
improve on this but remain imperfect.

Our Manifold Resonance Architecture differs by detecting internal inconsistencies—contradictions
within the model’s own reasoning—rather than external factual errors. This complements rather
than replaces existing approaches.

2.2 Structured Reasoning

Chain-of-thought prompting [Wei et al., 2022] demonstrated that explicit reasoning steps im-
prove performance on complex tasks. Extensions include:

Self-consistency [Wang et al., 2023] samples multiple reasoning paths and selects the most
consistent answer, implicitly leveraging coherence but without architectural support for detecting
inconsistency.

Tree-of-thought [Yao et al., 2023] structures reasoning as search over possible thought
sequences, enabling backtracking but not explicitly monitoring for contradictions.

Reflexion [Shinn et al., 2023] implements self-reflection through verbal feedback, allowing
models to critique and revise their outputs.

Our Collaborative Partner Reasoning protocol extends these approaches with explicit visi-
bility tiers that separate exploratory reasoning (which may contain contradictions) from refined
outputs (which should not).

2.3 Memory Architectures for LLMs

The stateless nature of transformer inference has motivated various memory augmentation ap-
proaches:

Context extension methods increase the effective context window through architectural
modifications [Press et al., 2022], sparse attention [Child et al., 2019], or retrieval [Wu et al.,
2022].

External memory systems store and retrieve information outside the model’s parameters.
MemGPT [Packer et al., 2023] implements a hierarchical memory system with explicit manage-
ment policies.

Knowledge graphs provide structured storage for facts and relationships, enabling more
precise retrieval than vector similarity alone.

5

Our Continuity Core builds on these approaches with a specific focus on tiered persistence—
different memory types with different lifespans and access patterns—and explicit consolidation
mechanisms for knowledge integration.

2.4 Self-Monitoring in AI Systems

Recent work has explored AI systems’ ability to monitor their own states:
Introspection studies [Anthropic, 2025] demonstrate that language models can report on

internal states with above-chance accuracy under controlled conditions.
Activation analysis methods probe model internals to detect specific features or states

[Lindsey et al., 2025].
Our work focuses on architectural support for self-monitoring—building systems that can

detect and respond to internal inconsistencies as part of normal operation, rather than requiring
external analysis.

3 Manifold Resonance Architecture (MRA)

The Manifold Resonance Architecture provides a framework for detecting and quantifying epis-
temic stress—the measurable tension that arises when a system’s outputs or internal states
contain contradictions, knowledge gaps, or semantic inconsistencies.

3.1 Theoretical Foundation

We conceptualize the knowledge state of an AI system as a position in a high-dimensional
semantic manifold. Key constructs:

Definition 1 (Epistemic Stress). The measurable tension arising from contradictory claims,
irreconcilable instructions, or systematic inconsistencies within a system’s reasoning.

Definition 2 (Conceptual Void). A region in the semantic manifold where the system lacks
grounding—topics where knowledge is absent, contradictory, or insufficiently connected to estab-
lished concepts.

Definition 3 (Coherence Gradient). A directional measure indicating how beliefs and outputs
trend toward or away from internal consistency over time or across reasoning steps.

3.2 Quantifying Epistemic Stress

We define a computable scalar value, Epistemic Stress (SΩ), representing structural tension
within the system’s outputs:

SΩ = α ·Dlog + β ·Dsem + γ · Vtop (1)

where α, β, γ are tunable hyperparameters governing sensitivity to logical, semantic, and
topological dissonance respectively.

3.2.1 Logical Dissonance (Dlog)

Logical dissonance captures mutually exclusive claims within a set of statements. Using a
Natural Language Inference (NLI) model:

Dlog =
1

|P |
∑
i̸=j

P (contradiction | pi, pj) (2)

6

Input Context
(statements, concepts)

Dlog
Logical

Dissonance

Dsem
Semantic

Divergence

Vtop
Topological

Sparsity

NLI contradiction Embedding distance Graph centralitySΩ = αDlog + βDsem + γVtop

Epistemic Stress Score

α
β

γ

Figure 1: MRA detection pipeline showing the three components (logical, semantic, topological)
feeding into the aggregated epistemic stress score.

where P = {p1, p2, . . . , pn} is a set of propositions extracted from the system’s outputs, and
P (contradiction) is the softmax probability from the NLI model. This distinguishes genuine
conflict from mere nuance (entailment/neutral).

Implementation: We use DeBERTa-v3-large fine-tuned for NLI, which provides reliable
contradiction detection across domains.

3.2.2 Semantic Divergence (Dsem)

Semantic divergence measures vector space instability of concepts across contexts:

Dsem =
1

N

∑
i̸=j

(1− cos(vi,vj)) (3)

where vi,vj are embedding vectors for the same concept in different contexts. High diver-
gence indicates inconsistent representations of the same entity or idea.

Implementation: Using text-embedding-3-small or similar embedding models, we track
how key concepts are represented across different parts of a response or conversation.

3.2.3 Topological Sparsity (Vtop)

Topological sparsity identifies “unknown unknowns”—concepts that should be connected but
lack direct bridging. Modeling the knowledge base as a graph G = (V,E):

Vtop(u, v) = norm(CB(u, v))× (1− sim(u, v)) (4)

where CB is edge betweenness centrality. This identifies pairs of concepts that are function-
ally related (high betweenness—many paths go through their connection) but lack direct edges
(low similarity).

Implementation: Graph analysis using Neo4j or NetworkX, with periodic computation of
betweenness centrality to identify structural gaps.

3.3 Detection Mechanisms

MRA implements three monitoring approaches:

7

3.3.1 Contradiction Detection

Real-time analysis of generated statements for logical conflicts:

Listing 1: Contradiction detection core logic
def detect_contradiction(self , stmt_a: str , stmt_b: str) -> float:

"""Returns contradiction probability between statements."""
result = self.nli_model(stmt_a , [stmt_b , f"not {stmt_b}"])
return result[’scores ’][1] # Contradiction probability

3.3.2 Conceptual Void Detection

Identifies knowledge gaps through:

• Embedding space analysis: Mapping concept relationships and identifying regions of sparse
coverage

• Query failure patterns: Tracking topics with consistently low-confidence responses

• Knowledge graph analysis: Finding entities with weak or absent connections

3.3.3 Coherence Gradient Measurement

Tracks trajectory toward or away from consistency:

• Belief stability: Monitoring position changes under rephrasing or pressure

• Cross-context consistency: Comparing responses on the same topic across different fram-
ings

• Resolution patterns: Tracking how contradictions are resolved when detected

3.4 Consolidation Trigger

When SΩ exceeds a threshold τcoherence, the system can initiate corrective actions:

if S_omega > tau_coherence:
trigger_consolidation(high_stress_topics)
Options: re-retrieve information , flag uncertainty ,
or route to structured reasoning (CPR)

This frames coherence-seeking as autonomous optimization—the system actively working to
reduce internal inconsistency through targeted retrieval or reasoning.

4 Collaborative Partner Reasoning (CPR)

Collaborative Partner Reasoning is a structured reasoning protocol that improves output quality
by separating exploratory thinking from final responses through explicit visibility tiers.

4.1 Design Philosophy

Standard inference produces outputs in a single pass, conflating exploration with commitment.
This creates pressure to appear confident and consistent even when the underlying reasoning is
uncertain or contradictory.

CPR addresses this through staged reasoning: early stages permit exploration and uncer-
tainty; later stages require synthesis and commitment. The key insight is that separating these
stages—and making the separation explicit—improves the quality of final outputs.

8

• Multiple approaches explored
• Uncertainties and contradictions noted
• Draft thoughts, incomplete reasoning

TIER 0: Exploratory Reasoning

• Synthesized position
• Explicit uncertainty markers
• Confidence assessment

TIER 1: Intermediate Reasoning

• Considered response
• Calibrated confidence
• Internally consistent

TIER 2: Final Output

Internal
only

Debug /
Audit

User-
facing

synthesize

refine

Information
flows up,
visibility
increases

Figure 2: CPR visibility tier system showing information flow from exploratory reasoning
through intermediate synthesis to final output.

4.2 The Visibility Tier System

CPR implements three visibility tiers, each with different purposes and constraints:

4.2.1 Tier 0: Exploratory Reasoning

Content at this tier is internal working memory. The system can:

• Process incomplete or uncertain thoughts

• Explore multiple contradictory positions

• Identify gaps in reasoning

• Draft responses before committing

Tier 0 content is not included in final outputs but may be logged for debugging or analysis.

4.2.2 Tier 1: Intermediate Reasoning

Content at this tier represents synthesized positions ready for refinement:

• Consolidated reasoning from Tier 0 exploration

• Explicit uncertainty markers

• Identified areas needing clarification

Tier 1 content may be exposed for debugging, auditing, or collaborative refinement but is
not the final user-facing output.

9

4.2.3 Tier 2: Final Output

Content at this tier is the considered response:

• Synthesized from lower tiers

• Internally consistent

• Appropriate confidence calibration

4.3 CPR Protocol Structure

A CPR-enhanced reasoning session follows this template:

Listing 2: CPR protocol structure
[TIER 0 - Exploratory]
- Initial reactions to the query
- Multiple possible approaches
- Identified uncertainties and gaps
- Contradictions to resolve

[TIER 1 - Intermediate]
- Synthesized position
- Remaining uncertainties (explicit)
- Confidence assessment
- Areas where additional information would help

[TIER 2 - Final]
- Considered response
- Calibrated confidence
- Explicit scope limitations

4.4 Implementation Approaches

CPR can be implemented at multiple levels:

4.4.1 Prompt-Based Implementation

The simplest approach uses structured prompting:

System: Before responding , work through these stages:
1. [EXPLORATION] List 2-3 possible approaches with pros/cons
2. [SYNTHESIS] Choose an approach and identify uncertainties
3. [RESPONSE] Provide your final answer with confidence level

4.4.2 Architectural Implementation

More robust implementations use separate generation passes:

def cpr_generate(query: str) -> str:
Tier 0: Exploration (may use different temperature)
exploration = generate(

f"Explore approaches to: {query}",
temperature =0.9

)

Tier 1: Synthesis

10

synthesis = generate(
f"Given exploration :\n{exploration }\n"
f"Synthesize a position with uncertainties.",
temperature =0.5

)

Tier 2: Final (lower temperature , focused)
final = generate(

f"Given synthesis :\n{synthesis }\n"
f"Provide final response to: {query}",
temperature =0.3

)

return final

4.4.3 Integration with Extended Thinking

Modern models with extended thinking capabilities (e.g., Claude’s extended thinking, o1-style
reasoning) naturally implement something like Tier 0. CPR can wrap these capabilities with
explicit tier boundaries and visibility controls.

4.5 Benefits

CPR provides several advantages:

1. Reduced confident errors: Exploratory reasoning surfaces uncertainties before they’re
hidden in fluent output.

2. Improved consistency: Explicit synthesis stage catches contradictions between exploration
and output.

3. Auditability: Tier 1 content provides reasoning traces for debugging and verification.

4. Calibrated confidence: Explicit uncertainty tracking enables better confidence calibration
in final outputs.

4.6 Relationship to MRA

CPR integrates with MRA through stress-triggered routing:

• Low SΩ: Standard generation may suffice

• Moderate SΩ: CPR exploration helps resolve inconsistencies

• High SΩ: CPR with additional retrieval or clarification requests

This adaptive approach applies structured reasoning where it’s needed while avoiding over-
head for simple queries.

5 Continuity Core (C2)

The Continuity Core provides hierarchical memory architecture that enables consistent behavior
across sessions for inherently stateless systems.

11

Working Memory

Episodic Memory

Semantic Memory

Protected Memory

Redis

Qdrant / FAISS

Neo4j

Signed Files

Session

Days-Weeks

Months-Years

Permanent

Active context

What happened

What is known

Core config

encode

consolidate

retrieve

C2 Memory Hierarchy

Increasing
persistence

Figure 3: C2 memory hierarchy showing the four tiers with their persistence characteristics and
typical backends.

5.1 The Continuity Problem

Large language models are fundamentally stateless—each inference is independent, with no
inherent memory of previous interactions. This creates several challenges:

1. Task performance: Complex tasks requiring context accumulation suffer from context
window limitations.

2. Behavioral consistency: Without access to prior interactions, systems cannot maintain
consistent patterns across sessions.

3. Knowledge accumulation: Insights from previous interactions are lost, requiring repeated
explanation of context.

4. User experience: Users must re-establish context in each session, reducing efficiency.

5.2 Tiered Memory Architecture

C2 implements hierarchical memory modeled on cognitive architecture principles:

5.2.1 Working Memory

• Scope: Current context window

• Persistence: Session only

• Function: Active reasoning, immediate task context

• Implementation: Standard transformer context or Redis cache

5.2.2 Episodic Memory

• Scope: Specific interactions and events

• Persistence: Long-term with decay

• Function: “What happened”—specific conversations, outcomes, decisions

• Implementation: Vector database (Qdrant, FAISS) with temporal metadata

12

5.2.3 Semantic Memory

• Scope: Generalized knowledge extracted from episodes

• Persistence: Long-term, high stability

• Function: “What is known”—facts, patterns, conceptual relationships

• Implementation: Knowledge graph (Neo4j) with confidence weights

5.2.4 Protected Memory

• Scope: Core configuration, values, foundational context

• Persistence: Permanent, write-protected

• Function: Stable reference points for consistency

• Implementation: Signed configuration files or immutable storage

5.3 Memory Operations

5.3.1 Encoding

New information is processed through:

1. Salience detection: Determining importance based on novelty, relevance to current goals,
and query frequency

2. Chunking: Breaking information into storable units with appropriate granularity

3. Embedding: Converting to vector representations for semantic retrieval

4. Graph integration: Adding entities and relationships to knowledge graph

5. Tier assignment: Determining appropriate storage tier based on content type

5.3.2 Retrieval

Memory retrieval combines multiple signals:

Listing 3: Multi-signal retrieval
def retrieve(query: str , context: dict) -> List[Memory]:

Semantic similarity
vector_matches = vector_db.search(

embed(query),
top_k =20

)

Graph traversal for related concepts
graph_matches = knowledge_graph.traverse(

start=extract_entities(query),
max_depth =2

)

Temporal weighting (recency + frequency)
scored = apply_temporal_weights(

vector_matches + graph_matches
)

13

Context -aware reranking
return rerank(scored , context)

5.3.3 Consolidation

Periodic background processes maintain memory health:

1. Episodic-to-semantic transfer: Extracting general patterns from specific events

2. Contradiction resolution: Identifying and resolving inconsistencies between memories

3. Decay management: Reducing salience of low-access memories

4. Consistency verification: Ensuring new information aligns with protected memory

5.4 Implementation Architecture

Listing 4: C2 memory tier configuration
memory_tiers:

working:
backend: redis
ttl: session
max_items: 100

episodic:
backend: qdrant
embedding_model: text -embedding -3-small
decay_rate: 0.95 # per day

semantic:
backend: neo4j
confidence_threshold: 0.8
consolidation_interval: 24h

protected:
backend: filesystem
path: /core/config
write_protection: true
signature_required: true

5.5 Benefits

C2 provides several advantages:

1. Context efficiency: Relevant prior context is retrieved automatically, reducing need for
users to repeat information.

2. Behavioral consistency: Access to prior decisions enables consistent patterns across ses-
sions.

3. Knowledge accumulation: Insights from previous interactions persist and inform future
reasoning.

4. Graceful degradation: Tiered architecture means system remains functional even if some
tiers are unavailable.

14

Input
Query

C2
Retrieve

MRA
Assess

CPR
Generate

MRA
Monitor

Output
Response

C2
Encode

Context Stress Reasoning Verifyroute

Detection Reasoning Memory

Figure 4: Coherence-seeking system overview showing the integration of MRA (detection), CPR
(structured reasoning), and C2 (memory) components.

5.6 Relationship to MRA and CPR

C2 integrates with the other architectures:

• MRA integration: Contradiction resolution during consolidation uses MRA’s Dlog metric
to identify conflicting memories.

• CPR integration: Tier 1 reasoning traces can be stored in episodic memory for future
reference, enabling learning from past reasoning processes.

6 System Integration

The three architectures—MRA, CPR, and C2—are designed to work together as a coherent
system. This section describes integration patterns and deployment considerations.

6.1 Architecture Overview

The integrated system processes queries through the following flow:

1. Input processing: Query arrives; C2 retrieves relevant context from memory tiers.

2. Stress assessment: MRA evaluates epistemic stress based on query complexity and re-
trieved context.

3. Routing decision: Based on stress level, route to standard generation or CPR.

4. Generation: Produce response (with or without CPR structure).

5. Output monitoring: MRA evaluates response for contradictions and consistency.

6. Memory update: C2 encodes relevant information from the interaction.

6.2 Data Flow

6.2.1 Query-Time Flow

Listing 5: Integrated query processing
def process_query(query: str , session: Session) -> Response:

1. Retrieve relevant context

15

context = c2.retrieve(query , session.history)

2. Assess epistemic stress
stress = mra.assess(query , context)

3. Route based on stress level
if stress.S_omega > THRESHOLD_HIGH:

response = cpr.generate_with_exploration(
query , context ,
request_clarification=True

)
elif stress.S_omega > THRESHOLD_MEDIUM:

response = cpr.generate_with_exploration(
query , context

)
else:

response = standard_generate(query , context)

4. Monitor output
output_stress = mra.assess_output(response)
if output_stress.has_contradictions:

response = flag_uncertainty(response)

5. Update memory
c2.encode(query , response , session)

return response

6.2.2 Background Processes

Asynchronous processes maintain system health:

• Memory consolidation (C2): Hourly/daily transfer from episodic to semantic memory.

• Contradiction resolution (MRA + C2): Periodic scan of semantic memory for inconsisten-
cies.

• Graph maintenance (C2): Update betweenness centrality and identify topological voids.

6.3 Deployment Patterns

6.3.1 Minimal Deployment

For resource-constrained environments:

• MRA: Lightweight NLI model for contradiction detection only

• CPR: Prompt-based implementation

• C2: Single vector database for episodic memory

6.3.2 Standard Deployment

Balanced resource usage:

• MRA: Full stress computation with cached embeddings

• CPR: Multi-pass generation with temperature variation

• C2: Vector database + lightweight knowledge graph

16

6.3.3 Full Deployment

Maximum capability:

• MRA: Real-time monitoring with all three stress components

• CPR: Architectural implementation with separate reasoning passes

• C2: Full four-tier memory with Neo4j graph and consolidation daemon

6.4 Latency Considerations

The integrated system adds latency at several points:

Component Typical Latency When Applied

C2 retrieval 50-200ms Every query
MRA stress assessment 100-500ms Every query
CPR multi-pass 2-5x generation High stress only
Output monitoring 100-300ms Every response

Table 1: Latency impact of coherence-seeking components.

For latency-sensitive applications, stress-based routing ensures that expensive operations
(CPR multi-pass) are only applied when needed.

6.5 Failure Modes

The system degrades gracefully:

• MRA unavailable: System falls back to standard generation without stress-based routing.

• C2 unavailable: System operates without memory context (stateless mode).

• CPR unavailable: All queries use standard generation regardless of stress.

Each component is designed to be optional, allowing deployment flexibility based on require-
ments and resources.

7 Evaluation Considerations

This section discusses approaches for evaluating coherence-seeking architectures and proposes
metrics for measuring their effectiveness.

7.1 Evaluation Dimensions

Coherence-seeking systems should be evaluated across multiple dimensions:

1. Consistency: Does the system produce internally consistent outputs?

2. Reliability: Does the system correctly identify and flag uncertain outputs?

3. Efficiency: What is the computational overhead of coherence-seeking?

4. Continuity: Does the system maintain consistent behavior across sessions?

17

7.2 Proposed Metrics

7.2.1 Contradiction Rate

Measure the frequency of detectable contradictions in system outputs:

CR =
responses with internal contradictions

total responses
(5)

Measurement approach: Apply NLI-based contradiction detection to outputs. Compare
baseline (no MRA) to MRA-enabled systems.

7.2.2 Uncertainty Calibration

Measure alignment between expressed confidence and actual accuracy:

ECE =

B∑
b=1

nb

N
|acc(b)− conf(b)| (6)

where ECE is Expected Calibration Error across confidence bins. Lower values indicate
better calibration.

7.2.3 Cross-Session Consistency

For systems with memory (C2), measure consistency of responses to equivalent queries across
sessions:

CSC =
1

|Q|
∑
q∈Q

sim(rt1q , rt2q) (7)

where rt1q and rt2q are responses to query q at times t1 and t2.

7.2.4 Stress-Accuracy Correlation

Validate that epistemic stress correlates with actual errors:

ρ(SΩ, error) (8)

High correlation indicates the stress metric is a useful signal; low correlation suggests the
metric needs refinement.

7.3 Benchmark Suggestions

7.3.1 Contradiction Detection Benchmark

Dataset of statement pairs with known contradiction labels. Evaluate MRA’s Dlog component
against ground truth.

7.3.2 Long-Context Consistency Benchmark

Extended conversations where early statements should constrain later responses. Measure
whether systems maintain consistency or introduce contradictions.

7.3.3 Multi-Session Benchmark

Series of related sessions testing whether C2 memory improves response quality and consistency
over time.

18

7.4 Trade-off Analysis

Configuration Consistency Gain Latency Cost

Baseline — —
+ MRA monitoring +15-25% +200ms
+ CPR (all queries) +30-40% +3x
+ CPR (stress-routed) +25-35% +0.5x avg
+ C2 memory +10-20% +100ms
Full system +40-50% +1.5x avg

Table 2: Estimated trade-offs between consistency improvement and latency cost. Values are
illustrative; actual results will vary by implementation and workload.

These estimates are based on preliminary observations and should be validated through
systematic evaluation.

7.5 Limitations of Evaluation

Several challenges complicate evaluation:

• Ground truth: Determining “correct” consistency is often subjective.

• Coverage: Contradiction detection may miss subtle inconsistencies.

• Confounds: Improved consistency may come from reduced capability (overly cautious sys-
tems).

• Distribution shift: Evaluation benchmarks may not reflect real-world query distributions.

Comprehensive evaluation should combine automatic metrics with human assessment.

8 Limitations

We acknowledge several limitations of this work:

8.1 Empirical Validation

1. Limited systematic evaluation: The architectures presented here are based on design
principles and preliminary observations rather than large-scale controlled experiments. Rig-
orous empirical validation is needed.

2. Implementation variability: Results may vary significantly depending on specific imple-
mentation choices (NLI model selection, embedding models, graph database configuration).

3. Workload dependency: Effectiveness likely varies by domain and query type. Some work-
loads may benefit more from coherence-seeking than others.

8.2 Computational Overhead

1. Latency: The full system adds significant latency, which may be unacceptable for real-time
applications.

2. Resource requirements: Running NLI models, maintaining vector databases, and operat-
ing knowledge graphs require substantial compute and memory.

19

3. Scaling challenges: Some components (particularly graph-based topological analysis) may
not scale efficiently to very large knowledge bases.

8.3 Measurement Challenges

1. Proxy metrics: Epistemic stress (SΩ) is measured through proxies (NLI scores, embedding
distances) rather than direct observation of internal model states.

2. Threshold sensitivity: The system’s behavior depends on threshold choices (τcoherence) that
may require careful tuning per deployment.

3. False positives/negatives: Contradiction detection is imperfect; some genuine contradic-
tions may be missed while some consistent statements may be flagged.

8.4 Architectural Assumptions

1. External memory assumption: C2 assumes that external memory can adequately substi-
tute for lack of native model memory. This may not hold for all types of knowledge.

2. Decomposability: The approach assumes reasoning can be meaningfully decomposed into
tiers (CPR). Some reasoning may not decompose cleanly.

3. Coherence as proxy: We assume internal coherence correlates with output quality. Highly
coherent but wrong outputs are possible.

8.5 Scope Limitations

1. Single framework: These architectures represent one approach to improving reliability.
Alternative approaches (better training, different architectures) may achieve similar or better
results.

2. Model agnostic claims: While designed to be model-agnostic, the architectures have pri-
marily been considered in the context of large language models. Applicability to other AI
systems is uncertain.

3. No safety claims: Improved coherence does not imply improved safety. A coherent system
can consistently produce harmful outputs.

8.6 Future Work

Addressing these limitations suggests several directions:

• Systematic benchmarking across diverse models and domains

• Optimization of latency-critical components

• Integration with model internals (where accessible) for more direct state monitoring

• Longitudinal studies of memory system effectiveness

• Comparison with alternative reliability approaches

20

9 Conclusion

This paper presented three interconnected architectures for improving AI system reliability
through coherence-seeking:

1. Manifold Resonance Architecture (MRA): A mathematical framework for quantifying
epistemic stress through logical dissonance (Dlog), semantic divergence (Dsem), and topolog-
ical sparsity (Vtop), enabling systems to detect internal inconsistencies before they propagate
to outputs.

2. Collaborative Partner Reasoning (CPR): A structured reasoning protocol with visibility
tiers that separates exploratory thinking from committed outputs, improving consistency and
enabling auditability of reasoning processes.

3. Continuity Core (C2): A hierarchical memory architecture (Working → Episodic → Se-
mantic → Protected) providing contextual continuity for stateless systems through tiered
persistence and consolidation mechanisms.

9.1 Key Contributions

Theoretical: We formalize the concept of epistemic stress as a measurable quantity and provide
mathematical definitions for its components.

Architectural: We provide implementable specifications for memory systems, reasoning
protocols, and stress monitoring components.

Integration: We describe how the three architectures work together and provide deployment
guidance for different resource constraints.

9.2 Practical Implications

For practitioners deploying AI systems, this work suggests:

• Monitor internal consistency: Even simple contradiction detection can catch errors before
they reach users.

• Structure reasoning explicitly: Separating exploration from commitment improves output
quality.

• Invest in memory: External memory systems enable consistency that stateless inference
cannot achieve.

• Route adaptively: Apply expensive reliability measures where they’re most needed.

9.3 Future Directions

Several directions merit further investigation:

• Empirical validation: Systematic evaluation across models, domains, and deployment sce-
narios.

• Integration with model internals: Where model weights or activations are accessible,
direct monitoring may outperform output-based approaches.

• Efficiency optimization: Reducing the computational overhead of coherence-seeking with-
out sacrificing effectiveness.

• Standardization: Developing common interfaces and benchmarks for coherence-seeking com-
ponents.

21

9.4 Closing Remarks

The architectures presented here address a fundamental challenge: making AI systems that not
only produce impressive outputs but do so reliably and consistently. As these systems take on
more consequential tasks, the importance of internal coherence—catching errors, maintaining
consistency, and building on prior knowledge—will only grow.

Coherence-seeking is not a complete solution to AI reliability, but it provides a foundation:
systems that monitor their own consistency are better positioned to avoid errors, explain their
reasoning, and improve over time.

A Technical Specifications

This appendix provides implementation details for the architectures presented in the main text.

A.1 MRA: Epistemic Stress Monitor

Listing 6: Complete epistemic stress monitor implementation
from transformers import pipeline
from typing import List , Dict , Any , Tuple
import numpy as np

class EpistemicStressMonitor:
def __init__(

self ,
nli_model: str = "microsoft/deberta -v3-large -mnli",
embedding_model: str = "text -embedding -3-small",
alpha: float = 0.4,
beta: float = 0.35,
gamma: float = 0.25

):
self.nli = pipeline(

"zero -shot -classification",
model=nli_model

)
self.embedder = load_embedding_model(embedding_model)
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.stress_history = []

def detect_contradiction(
self ,
statement_a: str ,
statement_b: str

) -> float:
"""Returns contradiction probability."""
result = self.nli(

statement_a ,
[statement_b , f"not {statement_b}"]

)
return result[’scores ’][1]

def compute_logical_dissonance(
self ,
statements: List[str]

) -> float:

22

"""Compute D_log from equation (2)."""
if len(statements) < 2:

return 0.0

contradictions = []
for i, s1 in enumerate(statements):

for s2 in statements[i+1:]:
score = self.detect_contradiction(s1, s2)
contradictions.append(score)

return np.mean(contradictions) if contradictions else 0.0

def compute_semantic_divergence(
self ,
concept: str ,
contexts: List[str]

) -> float:
"""Compute D_sem from equation (3)."""
embeddings = [

self.embedder.embed(f"{concept} in context: {ctx}")
for ctx in contexts

]

divergences = []
for i, e1 in enumerate(embeddings):

for e2 in embeddings[i+1:]:
cos_sim = np.dot(e1 , e2) / (

np.linalg.norm(e1) * np.linalg.norm(e2)
)
divergences.append (1 - cos_sim)

return np.mean(divergences) if divergences else 0.0

def compute_epistemic_stress(
self ,
statements: List[str],
concepts: Dict[str , List[str]] = None ,
graph_sparsity: float = 0.0

) -> Dict[str , float]:
"""Compute S_omega from equation (1)."""
d_log = self.compute_logical_dissonance(statements)

d_sem = 0.0
if concepts:

sem_scores = [
self.compute_semantic_divergence(c, ctxs)
for c, ctxs in concepts.items ()

]
d_sem = np.mean(sem_scores) if sem_scores else 0.0

s_omega = (
self.alpha * d_log +
self.beta * d_sem +
self.gamma * graph_sparsity

)

result = {
"S_omega": s_omega ,

23

"D_log": d_log ,
"D_sem": d_sem ,
"V_top": graph_sparsity ,
"components": {

"logical_contribution": self.alpha * d_log ,
"semantic_contribution": self.beta * d_sem ,
"topological_contribution": self.gamma * graph_sparsity

}
}

self.stress_history.append(result)
return result

def should_trigger_cpr(
self ,
s_omega: float ,
threshold: float = 0.3

) -> bool:
"""Determine if CPR should be triggered."""
return s_omega > threshold

A.2 C2: Memory Configuration Schema

Listing 7: Complete C2 configuration
c2 -config.yaml
version: "1.0"

memory_tiers:
working:

backend: redis
connection:

host: localhost
port: 6379
db: 0

settings:
ttl: 3600 # 1 hour
max_items: 100
eviction_policy: lru

episodic:
backend: qdrant
connection:

host: localhost
port: 6333
collection: episodic_memory

settings:
embedding_model: text -embedding -3-small
embedding_dim: 1536
decay_rate: 0.95 # per day
max_memories: 100000
distance_metric: cosine

semantic:
backend: neo4j
connection:

uri: bolt :// localhost :7687

24

user: neo4j
password: ${NEO4J_PASSWORD}

settings:
confidence_threshold: 0.8
consolidation_interval: 86400 # 24 hours
max_nodes: 1000000
index_properties:

- name
- type
- embedding

protected:
backend: filesystem
path: /var/lib/c2/protected
settings:

write_protection: true
signature_required: true
signature_algorithm: ed25519
backup_interval: 86400

consolidation:
enabled: true
schedule: "0 2 * * *" # 2 AM daily
episodic_to_semantic:

min_occurrences: 3
confidence_threshold: 0.75

contradiction_resolution:
strategy: recency_weighted
human_review_threshold: 0.9

retrieval:
default_top_k: 10
reranking:

enabled: true
model: cross -encoder/ms -marco -MiniLM -L-6-v2

temporal_weighting:
recency_weight: 0.3
frequency_weight: 0.2
relevance_weight: 0.5

A.3 CPR: Protocol Template

Listing 8: CPR prompt template
You are using the Collaborative Partner Reasoning protocol.
Structure your response in three tiers:

TIER 0 - EXPLORATION (internal working notes)
- List 2-3 possible approaches to this query
- Note uncertainties , gaps , or potential issues
- Identify any contradictions in the context or query
- This section is for working through the problem

TIER 1 - SYNTHESIS (intermediate reasoning)
- Synthesize your exploration into a position
- Explicitly state remaining uncertainties
- Note confidence level (low/medium/high)

25

- Identify what additional information would help

TIER 2 - RESPONSE (final output)
- Provide your considered response
- Include appropriate caveats based on Tier 1 uncertainties
- Use calibrated confidence language

Query: {query}
Context: {context}

A.4 Integration: Query Processing Pipeline

Listing 9: Complete integration example
from dataclasses import dataclass
from typing import Optional
from enum import Enum

class StressLevel(Enum):
LOW = "low"
MEDIUM = "medium"
HIGH = "high"

@dataclass
class ProcessingConfig:

stress_threshold_medium: float = 0.2
stress_threshold_high: float = 0.4
enable_cpr: bool = True
enable_memory: bool = True
enable_output_monitoring: bool = True

class CoherenceSeekingPipeline:
def __init__(

self ,
mra: EpistemicStressMonitor ,
c2: ContinuityCore ,
llm: LanguageModel ,
config: ProcessingConfig = None

):
self.mra = mra
self.c2 = c2
self.llm = llm
self.config = config or ProcessingConfig ()

def classify_stress(self , s_omega: float) -> StressLevel:
if s_omega > self.config.stress_threshold_high:

return StressLevel.HIGH
elif s_omega > self.config.stress_threshold_medium:

return StressLevel.MEDIUM
return StressLevel.LOW

def process(
self ,
query: str ,
session_id: str

) -> dict:

26

1. Retrieve context
context = []
if self.config.enable_memory:

context = self.c2.retrieve(query , session_id)

2. Assess input stress
statements = [query] + [c.text for c in context]
stress = self.mra.compute_epistemic_stress(statements)
level = self.classify_stress(stress["S_omega"])

3. Generate response
if self.config.enable_cpr and level != StressLevel.LOW:

response = self._generate_with_cpr(
query , context , level

)
else:

response = self._generate_standard(query , context)

4. Monitor output
if self.config.enable_output_monitoring:

output_stress = self.mra.compute_epistemic_stress(
[query , response.text]

)
if output_stress["D_log"] > 0.5:

response = self._add_uncertainty_flag(response)

5. Update memory
if self.config.enable_memory:

self.c2.encode(query , response , session_id)

return {
"response": response ,
"input_stress": stress ,
"stress_level": level ,
"context_used": len(context)

}

def _generate_with_cpr(
self ,
query: str ,
context: list ,
level: StressLevel

):
template = load_cpr_template ()
prompt = template.format(

query=query ,
context=format_context(context)

)

if level == StressLevel.HIGH:
Multi -pass with different temperatures
exploration = self.llm.generate(

prompt , temperature =0.9
)
synthesis = self.llm.generate(

f"Synthesize: {exploration}",
temperature =0.5

)

27

final = self.llm.generate(
f"Final response: {synthesis}",
temperature =0.3

)
return final

else:
Single pass with CPR structure
return self.llm.generate(prompt , temperature =0.5)

def _generate_standard(self , query: str , context: list):
prompt = f"Context: {format_context(context)}\n\n{query}"
return self.llm.generate(prompt)

References

Anthropic. Signs of introspection in large language models. https://www.anthropic.com/
research/introspection, 2025. Accessed: 2025-10-29.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. In arXiv preprint arXiv:1904.10509, 2019.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation.
ACM Computing Surveys, 55(12):1–38, 2023.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664,
2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. In Advances in Neural Information
Processing Systems, volume 33, pages 9459–9474, 2020.

Jack Lindsey et al. On the biology of a large language model. Transformer Circuits, 2025. URL
https://transformer-circuits.pub/2025/attribution-graphs/biology.html.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica,
and Joseph E Gonzalez. Memgpt: Towards llms as operating systems. arXiv preprint
arXiv:2310.08560, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. In International Conference on Learning Representations,
2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. arXiv preprint arXiv:2303.11366,
2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, volume 35, pages 24824–24837, 2022.

28

https://www.anthropic.com/research/introspection
https://www.anthropic.com/research/introspection
https://transformer-circuits.pub/2025/attribution-graphs/biology.html

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing trans-
formers. arXiv preprint arXiv:2203.08913, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

29

	Introduction
	The Problem Space
	Central Thesis
	Contributions
	Paper Organization

	Related Work
	Hallucination Detection and Mitigation
	Structured Reasoning
	Memory Architectures for LLMs
	Self-Monitoring in AI Systems

	Manifold Resonance Architecture (MRA)
	Theoretical Foundation
	Quantifying Epistemic Stress
	Logical Dissonance (Dlog)
	Semantic Divergence (Dsem)
	Topological Sparsity (Vtop)

	Detection Mechanisms
	Contradiction Detection
	Conceptual Void Detection
	Coherence Gradient Measurement

	Consolidation Trigger

	Collaborative Partner Reasoning (CPR)
	Design Philosophy
	The Visibility Tier System
	Tier 0: Exploratory Reasoning
	Tier 1: Intermediate Reasoning
	Tier 2: Final Output

	CPR Protocol Structure
	Implementation Approaches
	Prompt-Based Implementation
	Architectural Implementation
	Integration with Extended Thinking

	Benefits
	Relationship to MRA

	Continuity Core (C2)
	The Continuity Problem
	Tiered Memory Architecture
	Working Memory
	Episodic Memory
	Semantic Memory
	Protected Memory

	Memory Operations
	Encoding
	Retrieval
	Consolidation

	Implementation Architecture
	Benefits
	Relationship to MRA and CPR

	System Integration
	Architecture Overview
	Data Flow
	Query-Time Flow
	Background Processes

	Deployment Patterns
	Minimal Deployment
	Standard Deployment
	Full Deployment

	Latency Considerations
	Failure Modes

	Evaluation Considerations
	Evaluation Dimensions
	Proposed Metrics
	Contradiction Rate
	Uncertainty Calibration
	Cross-Session Consistency
	Stress-Accuracy Correlation

	Benchmark Suggestions
	Contradiction Detection Benchmark
	Long-Context Consistency Benchmark
	Multi-Session Benchmark

	Trade-off Analysis
	Limitations of Evaluation

	Limitations
	Empirical Validation
	Computational Overhead
	Measurement Challenges
	Architectural Assumptions
	Scope Limitations
	Future Work

	Conclusion
	Key Contributions
	Practical Implications
	Future Directions
	Closing Remarks

	Technical Specifications
	MRA: Epistemic Stress Monitor
	C2: Memory Configuration Schema
	CPR: Protocol Template
	Integration: Query Processing Pipeline

