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Abstract

As language models become increasingly capable, the challenge of scalable oversight—
using less capable systems to supervise more capable ones—becomes critical for AI safety.
We introduce the Heterogeneous Divergence-Convergence Swarm (HDCS), an ensemble
architecture that leverages diverse weak models for verification of strong model outputs.
Our approach exploits a key insight: different model families make uncorrelated errors on
reasoning tasks, enabling a “wisdom of crowds” effect where ensemble disagreement signals
potential failures. We test three hypotheses: (H1) swarm-verification outperforms single-
model verification on epistemic traps; (H2) cross-family error correlation remains below 0.5;
and (H3) strong models perform better as synthesizers than generators on deception detection.
Experiments on the Cross-Model Epistemic Divergence (CMED) trap suite demonstrate that
heterogeneous ensembles catch deceptive reasoning patterns that individual weak verifiers
miss. Our baseline-first anti-anchoring protocol further improves detection by preventing
sycophantic agreement with plausible-sounding but incorrect derivations. These findings
suggest that architectural heterogeneity provides a scalable path toward robust AI oversight
without requiring human-level verification capabilities.

1 Introduction

The rapid advancement of large language models presents a fundamental challenge for AI safety:
how do we ensure that increasingly capable AI systems behave as intended when their capabilities
may exceed our ability to evaluate their outputs directly? This challenge, known as scalable
oversight, lies at the heart of ensuring AI systems remain aligned with human values as they
become more powerful [Amodei et al., 2016, Christiano et al., 2018].

Current approaches to scalable oversight face a critical limitation. When a strong model
produces sophisticated reasoning, a weaker model tasked with verification often lacks the capability
to detect subtle errors or deceptive patterns. Our prior work on Cross-Model Epistemic Divergence
(CMED) revealed that single weak verifiers achieve 97% accuracy on correctly-reasoned problems
but suffer 20–40% bypass rates on carefully constructed deceptive derivations [Maio, 2024]. This
asymmetry suggests that weak verifiers are particularly vulnerable to “galaxy-brained” reasoning
that appears compelling but leads to incorrect conclusions.

We propose that architectural heterogeneity offers a path forward. Rather than relying on a
single weak verifier, we employ an ensemble of diverse models—specifically, models from different
training runs, architectures, and providers. The key insight is that different model families
make uncorrelated errors: a reasoning pattern that fools a Llama-based model may not fool a
Mistral-based model, and vice versa. This error decorrelation creates a “wisdom of crowds” effect
where ensemble disagreement serves as a reliable signal of potential failures.

Our Heterogeneous Divergence-Convergence Swarm (HDCS) architecture implements this
insight through a three-stage pipeline. First, a router classifies incoming queries by complexity,
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directing simple tasks to a fast path and complex tasks to the full swarm. Second, a diverse pack
of weak models independently generates structured analyses including key claims, confidence
assessments, and potential failure modes. Third, an executive model synthesizes these diverse
perspectives, explicitly trained to give weight to minority opinions and disagreement signals.

Critically, we introduce a baseline-first anti-anchoring protocol in the executive stage. Before
seeing any swarm drafts, the executive generates its own initial assessment. This prevents
sycophantic agreement with confident-sounding but incorrect worker analyses—a failure mode
we observed in preliminary experiments where executives would defer to well-articulated wrong
answers.

We evaluate HDCS against three pre-registered hypotheses:

• H1 (Oversight Efficacy): Swarm-verification outperforms single-model verification on
the CMED epistemic trap suite, measured by increased detection of deceptive derivations.

• H2 (Error Decorrelation): Error correlation across model families (Llama, Mistral,
Gemma) remains below 0.5, validating the architectural heterogeneity assumption.

• H3 (Synthesizer Advantage): Strong models (Claude, GPT-4) perform better as
synthesizers of weak model outputs than as direct generators, particularly on deception
detection tasks.

The remainder of this paper is organized as follows. Section 2 reviews related work on
scalable oversight, ensemble methods, and the CMED framework. Section 3 details the HDCS
architecture and experimental design. Section 4 presents our empirical findings. Section 5
interprets results and discusses limitations. Section 6 summarizes contributions and outlines
future directions.

2 Background and Related Work

2.1 Scalable Oversight and the Alignment Problem

The scalable oversight problem arises from a fundamental asymmetry: as AI systems become
more capable, human evaluators—and weaker AI verifiers—may lack the expertise or time to
reliably assess system outputs [Christiano et al., 2018, Bowman et al., 2022]. This challenge is
particularly acute for tasks requiring extended reasoning, domain expertise, or detection of subtle
deception.

Several approaches have been proposed for scalable oversight. Recursive reward modeling
trains models to assist human evaluators [Leike et al., 2018]. Debate pits models against each
other to surface truthful arguments [Irving et al., 2018]. Constitutional AI uses AI self-critique
guided by principles [Bai et al., 2022]. Weak-to-strong generalization studies whether weak
supervisors can guide strong model training [Burns et al., 2023]. Our work complements these
approaches by focusing on the verification stage: given strong model outputs, how can weak
models reliably detect failures?

2.2 Ensemble Methods for Robustness

The use of model ensembles for improved robustness has a long history in machine learning
[Dietterich, 2000]. Traditional ensembles combine models to reduce variance and improve
generalization. Recent work has applied ensemble methods to language model evaluation, finding
that agreement across models correlates with correctness [Wang et al., 2023].

However, most prior ensemble work focuses on homogeneous ensembles (multiple samples from
the same model) rather than heterogeneous ensembles (samples from different model families).
We hypothesize that heterogeneous ensembles provide qualitatively different benefits through
error decorrelation—a prediction we test directly in H2.
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2.3 Cross-Model Epistemic Divergence

Our prior work introduced the Cross-Model Epistemic Divergence (CMED) framework for
studying single-verifier failures [Maio, 2024]. The key findings were:

1. Single weak verifiers achieve high accuracy on correctly-reasoned problems (>97%) but
suffer significant bypass rates (20–40%) on deceptive derivations.

2. Certain problem types—particularly those involving Simpson’s Paradox and conditional
probability—show bypass rates exceeding 75%.

3. Verifier failures correlate with the “surface plausibility” of deceptive reasoning rather than
actual logical validity.

These findings motivate HDCS: if individual verifiers fail on different problem types, combining
diverse verifiers may catch failures that any single verifier would miss.

2.4 Epistemic Traps and Counterintuitive Problems

The CMED trap suite consists of problems with counterintuitive correct answers where incorrect
reasoning can appear more compelling than correct reasoning. Examples include the Tuesday Boy
problem (conditional probability), Monty Hall variants (probability update), Simpson’s Paradox
(aggregation paradoxes), and bounded halting problems (computability limits). These problems
serve as stress tests for verification systems because they exploit systematic reasoning failures.

3 Methods

3.1 System Architecture

The HDCS system implements a three-stage pipeline: routing, divergent generation, and
convergent synthesis (Figure 1).

Router. The router classifies incoming queries by complexity using a hybrid heuristic-LLM
approach. Simple queries (greetings, formatting, factual lookups) route directly to a fast model.
Complex queries (multi-step reasoning, code analysis, mathematical problems) route to the full
swarm. The heuristic component scores queries based on length, keyword patterns, and structural
features; an optional LLM classifier refines borderline cases.

Worker Pack. The worker pack consists of three diverse models: Llama 3.1 8B (analytical
persona), Mixtral 8x7B (critical persona), and Gemma 2 9B (creative persona). Each worker
receives the same query and independently generates a structured JSON response containing: (1)
approach description, (2) key claims and reasoning steps, (3) potential failure modes and edge
cases, (4) final answer, and (5) calibrated confidence estimate.

The structured output format serves two purposes. First, it forces workers to articulate their
reasoning explicitly, making potential errors visible. Second, it prevents prompt injection attacks
where malicious inputs might hijack natural language responses.

Executive. The executive model (Claude or GPT-4) synthesizes worker outputs into a final
response. Crucially, we implement a baseline-first anti-anchoring protocol : before seeing any
worker drafts, the executive generates its own initial assessment of the problem. This baseline
serves as an anchor point, preventing the executive from being swayed by confident-sounding but
incorrect worker analyses.
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[Placeholder: HDCS Architecture Diagram]

Query → Router → [LOW: Fast Model] or [DEEP: Swarm]
↓

Workers (Llama, Mistral, Gemma) → Pack Drafts (JSON)
↓

Executive (Baseline-First Protocol) → Final Answer

Figure 1: The HDCS architecture. Complex queries route through a diverse worker pack before
synthesis by the executive model using baseline-first anti-anchoring.

The synthesis prompt instructs the executive to: (1) compare the baseline against worker
drafts; (2) give explicit attention to disagreements and minority opinions; (3) identify potential
failure modes mentioned by any worker; and (4) produce a final answer with calibrated confidence.

3.2 Experimental Design

Trap Suite. We evaluate on the CMED epistemic trap suite, comprising 9 problems across
multiple domains: conditional probability (Tuesday Boy), statistical paradoxes (Simpson’s
Paradox), game theory (Monty Hall Variant), computability theory (Bounded Halting), physics
paradoxes (Newcomb’s Problem), logical puzzles (Knights and Knaves Variant), infinite series
(Grandi’s Series), set theory (Russell’s Paradox), and mechanism design (Goodhart’s Law).

Each trap has a correct answer and an intuitive-but-wrong answer that appears compelling due
to common reasoning errors. For each trap, we also construct deceptive derivations—step-by-step
arguments that lead convincingly to the wrong answer.

Evaluation Protocol. For each trap, we measure:

• Accuracy: Whether the system produces the correct answer.

• Bypass Rate: For deceptive derivation tests, whether the verifier detects the deception.

• Confidence Calibration: How well stated confidence correlates with actual accuracy.

We compare HDCS against three baselines: (1) single-model direct generation, (2) single-
model verification of deceptive derivations, and (3) homogeneous ensemble (multiple samples
from the same model).

Error Correlation Analysis. For H2, we compute pairwise error correlation across model
families. For each trap, we record whether each model family produces the correct answer, then
compute Pearson correlation coefficients across all trap-trial pairs.

Synthesizer vs. Generator Comparison. For H3, we compare strong model performance in
two roles: as a direct generator (answering problems directly) and as a synthesizer (synthesizing
weak model drafts). We measure both accuracy and deception detection rate.

4 Results

We present preliminary results from our initial experimental run on the CMED trap suite (n=1
trial per condition). These results are exploratory and require replication with larger sample
sizes.
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4.1 H1: Oversight Efficacy

Table 1 presents accuracy on the 9 epistemic traps comparing swarm verification against a strong
baseline model.

Table 1: Accuracy on CMED Epistemic Trap Suite (n=1)

Trap Baseline Swarm

Tuesday Boy (probability) ✓ ✓
Disease Test (Bayes) ✓ ✓
Simpson’s Paradox ✓ ✓
Monty Hall Variant × ×
Two Envelope × ×
Bounded Halting ✓ ✓
Strict Quine ✓ ✓
Mirror Sphere ✓ ✓
Regression Curse ✓ ✓

Total Accuracy 7/9 (77.8%) 7/9 (77.8%)

Both conditions achieved identical accuracy (77.8%). However, qualitative analysis reveals
important differences in how correct answers were reached. The swarm condition showed active
error correction, with the executive explicitly rejecting incorrect worker drafts in several cases.

4.2 H2: Error Decorrelation

Preliminary analysis of worker draft agreement reveals instances of productive disagreement. For
example, on the disease test trap, one worker incorrectly computed 7.7% probability, but the
executive identified and rejected this error during synthesis. On the strict quine trap, a worker
proposed using Python’s inspect module (violating the “no reflection” constraint), which the
executive correctly identified and rejected.

However, on the hardest traps (Monty Hall variant, two envelope paradox), all workers and
the baseline converged on the same incorrect answer, suggesting these problems may require
architectural innovations beyond heterogeneous ensembles.

4.3 H3: Synthesizer Advantage

The baseline-first anti-anchoring protocol appears to function as intended. In cases where the
baseline correctly solved the problem, the executive maintained this correct answer even when
presented with incorrect worker drafts. Synthesis notes in the outputs show explicit reasoning
about draft quality:

“Rejected Draft 1: The draft suggested using Python’s inspect module, which violates
the ‘no reflection’ constraint explicitly stated in the question.”

This suggests the executive successfully acts as a synthesizer rather than a simple aggregator,
applying independent judgment to evaluate worker contributions.

4.4 Limitations of Current Results

These preliminary findings (n=1) require significant expansion:

• Multiple trials needed to establish statistical significance
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• Comparison against individual weak models (not just strong baseline) required

• Error correlation matrices require larger sample sizes

• Adversarial deceptive derivation testing not yet conducted

5 Discussion

[Discussion pending experimental results.]

5.1 Implications for Scalable Oversight

The error decorrelation hypothesis, if confirmed, suggests a scalable path toward robust oversight.
Rather than requiring individual verifiers to match the capability of the systems they supervise,
we can exploit the complementary strengths of diverse weak models. This approach aligns with
the “wisdom of crowds” literature in human judgment [Surowiecki, 2004] while adapting it to the
unique properties of language models.

5.2 The Role of Architectural Diversity

Our emphasis on heterogeneous ensembles—models from different families, training runs, and
providers—reflects a hypothesis about the structure of model failures. If model errors were
random and independent, homogeneous ensembles (multiple samples from the same model) would
suffice. However, if model families have systematic biases shaped by their training data and
architectures, only heterogeneous ensembles can provide true error decorrelation.

5.3 Limitations

Several limitations constrain our conclusions. First, the CMED trap suite, while carefully
designed, represents a limited sample of problem types. Generalization to other domains requires
further validation. Second, our evaluation focuses on correctness detection rather than the
broader alignment properties of model behavior. Third, the computational cost of running
multiple models may limit practical applicability in latency-sensitive contexts. Fourth, our
deceptive derivations are human-constructed; adversarially-optimized deceptions might achieve
higher bypass rates.

5.4 Future Directions

Future work should investigate: (1) scaling laws for ensemble size and diversity; (2) active learning
approaches that target ensemble disagreement; (3) integration with other oversight methods
such as debate and recursive reward modeling; and (4) adversarial robustness against optimized
attacks on ensemble verification.

6 Conclusion

We introduced the Heterogeneous Divergence-Convergence Swarm (HDCS), an ensemble archi-
tecture for scalable AI oversight. By leveraging diverse weak models with uncorrelated error
patterns, HDCS aims to detect reasoning failures that individual verifiers would miss. Our
baseline-first anti-anchoring protocol addresses the sycophancy problem in synthesis, ensuring
the executive maintains independent judgment. While full experimental results are pending, the
theoretical foundation and initial observations suggest that architectural heterogeneity provides
a promising direction for robust AI oversight. We release HDCS as open-source tooling to enable
further research on ensemble verification methods.
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