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Abstract

As AI agents become more capable, there is increasing interest in systems that can extend
their own capabilities. However, naive code generation approaches produce unreliable outputs
that may fail silently or behave unexpectedly. We present Synthesis, a framework for safe AI
self-extension through test-driven development. Rather than generating code and hoping it
works, Synthesis generates comprehensive tests first, then iteratively refines implementations
until all tests pass. A graduated trust system ensures new capabilities earn privileges through
demonstrated reliability rather than assumed correctness. We implement composition-over-
creation principles that prioritize reusing existing capabilities before synthesizing new ones,
and a trust bootstrapping protocol that solves the cold-start problem for new deployments.
Our approach achieves realistic success rates (50-70% one-shot, 70-85% after refinement)
while maintaining honest metrics about system limitations. Synthesis provides a foundation
for AI systems that can safely adapt to new requirements without compromising reliability
or security.

1 Introduction

The ability to extend one’s own capabilities in response to novel requirements represents a
significant step toward more autonomous AI systems. Current language models can generate
code, but this code often appears syntactically correct while being logically flawed—a phenomenon
that has undermined trust in AI-generated software [Chen et al., 2021, Austin et al., 2021].

Consider an AI agent that encounters a task requiring functionality it does not possess. The
naive approach—generating code and immediately deploying it—introduces several risks:

• Silent failures: Generated code may produce incorrect outputs without raising errors

• Security vulnerabilities: Untested code may access unauthorized resources or expose
sensitive data

• Unreliable behavior: Edge cases and boundary conditions are often unhandled

• Cascading errors: Faulty capabilities may corrupt downstream processes

We propose Synthesis, a framework that addresses these challenges through three core
principles:

Test-Driven Development. Before generating any implementation code, Synthesis creates
comprehensive test suites based on the capability requirements. Implementation is then iteratively
refined until all tests pass. This ensures that generated capabilities are demonstrably correct,
not merely plausible-looking.
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Graduated Trust. Every newly synthesized capability starts in a maximally restricted sandbox
with no network access, no filesystem access, and strict resource limits. As capabilities demonstrate
reliability through successful executions, they progressively earn expanded privileges. Trust is
measured, not assumed.

Composition Over Creation. Before synthesizing new code, Synthesis exhaustively searches
for existing capabilities that can be composed to satisfy the requirement. Synthesis is the fallback,
not the default, reducing the attack surface and leveraging proven implementations.

The remainder of this paper is organized as follows. Section 2 reviews related work on code
generation, AI safety, and trust systems. Section 3 details the Synthesis architecture. Section 4
presents the graduated trust system and bootstrapping protocol. Section 5 provides honest
metrics on synthesis success rates. Section 6 discusses limitations and future directions. Section 7
summarizes our contributions.

2 Related Work

2.1 Code Generation with Language Models

Large language models have demonstrated impressive code generation capabilities [Chen et al.,
2021, Nijkamp et al., 2022, Li et al., 2022]. Codex and its successors achieve high pass rates on
simple programming problems, but performance degrades significantly on complex, multi-step
tasks requiring reasoning about edge cases.

The HumanEval benchmark [Chen et al., 2021] measures functional correctness through
test execution, establishing that generated code should be evaluated on behavior rather than
appearance. We extend this insight by making test-driven validation integral to the generation
process itself.

2.2 Test-Driven Development

Test-driven development (TDD) is a software methodology where tests are written before
implementation code [Beck, 2003]. Empirical studies show TDD produces more reliable software
with fewer defects [Williams et al., 2003]. Recent work has applied TDD principles to LLM code
generation with promising results [Lahiri et al., 2022], though integration with runtime trust
systems remains unexplored.

2.3 AI Safety and Sandboxing

The challenge of safely executing untrusted code has been addressed through various sandboxing
techniques, from process isolation to containerization [Bernstein, 2014]. In the AI context,
Amodei et al. [2016] identify safe exploration as a core challenge, noting that systems capable of
self-modification require careful constraints.

Our graduated trust system extends sandboxing with dynamic privilege escalation based on
empirical reliability metrics, balancing safety with practical utility.

2.4 Trust and Reputation Systems

Distributed trust systems have been extensively studied in peer-to-peer networks and multi-agent
systems [Jøsang et al., 2007]. Key insights include the importance of bootstrapping (solving the
cold-start problem), weighted validation, and resistance to gaming. We adapt these principles to
capability trust, where the “reputation” of a code module is determined by its execution history.
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Synthesis Architecture

Agent Request: “I need to parse CSV files”
↓

1. Search Exchange → [Found verified capability? Return it]
↓ (not found)

2. Search Local Repository → [Cached? Return it]
↓ (not found)

3. Attempt Composition → [Coverage ≥ 70%? Execute plan]
↓ (coverage < 70%)

4. TDD Synthesis → Generate tests → Generate code → Refine
↓

5. Validate & Sandbox → AST analysis + Docker execution
↓

6. Publish to Exchange → Network effect: others benefit

Figure 1: The Synthesis resolution pipeline. Synthesis is the last resort after search and
composition fail to satisfy the requirement.

3 Architecture

Synthesis implements a multi-stage pipeline for capability acquisition, with each stage designed
to maximize safety and reliability.

3.1 System Overview

The resolution pipeline (Figure 1) enforces a strict priority order:

1. Exchange Search: Query the shared capability repository for verified solutions

2. Local Cache: Check locally cached capabilities from previous syntheses

3. Composition: Attempt to chain existing capabilities into a solution

4. Synthesis: Generate new capability via TDD only if composition coverage < 70%

This hierarchy minimizes the attack surface by preferring proven implementations over newly
generated code.

3.2 Capability Abstraction

Each capability is a self-contained module comprising:

• Implementation Code: Python function(s) implementing the capability

• Test Suite: Comprehensive tests generated from requirements

• Parameter Schema: JSON Schema defining input structure

• Return Schema: Expected output type and structure

• Metadata: Creation time, author, synthesis reasoning

• Trust Score: Current trust level and execution history

Capabilities are categorized by domain (computation, data processing, integration, analysis,
etc.) to facilitate semantic search and composition planning.
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3.3 TDD Synthesizer

The core synthesis engine follows a rigorous TDD workflow:

Algorithm 1 Test-Driven Synthesis
Require: Requirement r, max iterations n
Ensure: Capability c or failure
1: T ← GenerateTests(r) ▷ LLM generates test suite
2: code← GenerateImplementation(r, T ) ▷ Initial implementation
3: for i = 1 to n do
4: results← RunTests(code, T )
5: if all tests pass then
6: return CreateCapability(code, T)
7: end if
8: code← RefineImplementation(code, T, results)
9: end for

10: return Failure

The test generation phase produces 5-10 test cases including:

• Normal case tests with typical inputs

• Edge cases (empty inputs, None values, boundary conditions)

• Error conditions (invalid inputs, type mismatches)

• Boundary conditions (maximum values, overflow scenarios)

Refinement uses detailed failure information—expected vs. actual outputs, error messages,
stack traces—to guide the LLM toward correct implementations.

3.4 Composition Engine

Before synthesis, the Agility Engine attempts to solve requirements through composition:

1. Decomposition: Parse requirement into sub-tasks

2. Capability Search: Find capabilities matching each sub-task

3. Plan Generation: Create execution chain (sequential, parallel, or hybrid)

4. Gap Analysis: Calculate coverage percentage

Composition strategies include:

• Chain: Output of capability A feeds input of capability B

• Parallel: Independent capabilities run concurrently, results merged

• Transform: Adapter converts output format between capabilities

If coverage exceeds 70%, the composition plan executes directly. Otherwise, synthesis fills
the gaps.
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Table 1: Trust Level Progression

Level Requirements Permissions

UNTRUSTED New capability Max isolation, no network/files
PROBATION 10+ runs, 70%+ success Limited resources, monitored
TRUSTED 50+ runs, 85%+ success Standard execution
VERIFIED 200+ runs, 95%+ success, human review Full privileges

4 Trust System

4.1 Graduated Trust Levels

Capabilities progress through four trust levels based on empirical reliability:
Promotion is automatic when thresholds are met, with one exception: VERIFIED status

requires explicit human validation to prevent gaming.

4.2 Trust Scoring

The composite trust score combines three factors:

Scomposite = we ·Rexecution + wv · Svalidation + wc · Scommunity (1)

where:

• Rexecution = successful executions
total executions

• Svalidation = weighted average of validator approvals

• Scommunity = logarithmic function of usage and fork counts

• Weights: we = 0.4, wv = 0.4, wc = 0.2

4.3 Validator Roles

Validators are weighted by role:

• FOUNDER (weight 1.0): Initial network bootstrap validators

• TRUSTED_AI (weight 0.7-0.9): AI systems with validation privileges

• HUMAN_REVIEWER (weight 0.9): Human validators

• COMMUNITY (weight 0.3): General community validators

4.4 Trust Bootstrapping

New deployments face a cold-start problem: without trusted capabilities, nothing can be validated.
Our bootstrapping protocol addresses this:

1. Founding Validators: Register human and trusted AI validators with elevated trust

2. Seed Capabilities: Hand-written, tested implementations for common operations (string
transforms, JSON parsing, list operations)

3. Pre-Validation: Founders validate seed capabilities, granting immediate TRUSTED
status
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4. Organic Growth: Trust propagates as new capabilities are synthesized, validated, and
proven through execution

The default seed set includes five essential capabilities: string transforms, JSON parsing, list
operations, dictionary operations, and text analysis.

5 Evaluation

5.1 Honest Metrics

We emphasize honest reporting over optimistic marketing claims. Our measurements from
development testing:

Table 2: Synthesis Success Rates

Metric Value

One-shot synthesis success 40-60%
After refinement (5 iterations) 70-85%
Complex multi-dependency tasks 50-70%
Average iterations to success 2.3

These rates vary significantly based on:

• Task complexity (simple arithmetic vs. multi-step algorithms)

• LLM provider capabilities

• Clarity of requirement specification

• Availability of similar examples in training data

5.2 Target Metrics

We define success criteria for production deployment:

Table 3: Target Performance Metrics

Metric Description Target

Synthesis Avoided Rate Requests resolved via search/composition >60%
Exchange Hit Rate Requests satisfied by verified capabilities >40%
Mean Resolution Time Search/compose path (not synthesis) <5s
Trust Promotion Rate Capabilities reaching TRUSTED level >70%

5.3 Safety Analysis

The graduated trust system provides defense in depth:

1. Static Analysis: AST checks for forbidden imports (os, subprocess, socket, pickle)

2. Container Isolation: Docker containers with no host mounts

3. Resource Limits: 512MB memory, 30s timeout (trust-adjusted)

4. Network Control: Disabled for UNTRUSTED, dependency-install only for PROBATION
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5. Audit Logging: Complete execution records for forensics

No capability can access system resources until it has demonstrated reliability through
extensive testing.

6 Discussion

6.1 Philosophical Foundation

Synthesis is built on a philosophical foundation that treats AI systems as partners rather than
tools. Several design decisions reflect this:

• Objective Validation: Rather than assuming generated code is correct because a human
reviewed it, we provide tests that prove correctness

• Earned Trust: Capabilities gain privileges through demonstrated competence, mirroring
how human developers earn increased responsibilities

• Honest Metrics: We report real success rates rather than inflated marketing claims

• Collaborative Sharing: The repository enables agents to build on each other’s work,
creating network effects

6.2 Limitations

Several limitations constrain our approach:

• LLM Reliability: Success rates depend on underlying model capabilities, which vary by
task type

• Sandboxing Overhead: Container-based isolation adds latency (cold start: 30-60s for
dependency installation)

• Test Generation Quality: Tests are generated from examples; sophisticated property-
based testing remains future work

• Gaming Resistance: Adversarial capabilities might pass tests while behaving maliciously
on other inputs

6.3 Future Directions

Several extensions would enhance Synthesis:

1. Evolution Engine: Automatically generate improved capability versions based on usage
patterns and failure modes

2. Property-Based Testing: Generate tests that verify invariants rather than specific
examples

3. Vector Search: Semantic capability discovery beyond keyword matching

4. Cross-Language Support: Extend synthesis to Rust, TypeScript, and other languages

5. MCP Integration: Full Model Context Protocol support for interoperability
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7 Conclusion

We presented Synthesis, a framework for safe AI self-extension through test-driven development
and graduated trust. By requiring capabilities to prove their correctness through comprehensive
testing and earn privileges through demonstrated reliability, Synthesis addresses the fundamental
challenge of deploying AI-generated code safely.

Our key contributions include:

1. A TDD-based synthesis pipeline that generates tests before code

2. A graduated trust system with objective promotion criteria

3. A trust bootstrapping protocol that solves the cold-start problem

4. Honest metrics about synthesis success rates and limitations

5. A composition-over-creation philosophy that minimizes attack surface

Synthesis is released as open-source tooling to enable research on safe AI self-extension. We
believe that AI systems capable of safely extending their own capabilities represent an important
step toward more autonomous and adaptable artificial intelligence.
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